The fascinating properties of majority
Mathias Soeken
Integrated Systems Laboratory, EPFL, Switzerland

- mathias.soeken@epfl.ch msoeken.github.io (O) msoeken/cirkit

A brief history of majority logic

[S.B. Akers Jr., IRE Trans. EC-10 (1961), 604-615]

A brief history of majority logic

Before leaving this section on synthesis, several comments seem appropriate. The reader's first reaction to the foregoing may well be that the one thing which the general area of switching circuit theory does not need is another method for synthesizing combinational logic. However, this method does offer several features which may make it more desirable in certain applications:
[S.B. Akers Jr., IRE Trans. EC-10 (1961), 604-615]

A brief history of majority logic

[C. Schensted, Letter to Martin Gardner, Dec 9, 1978]

A brief history of majority logic

[D.E. Knuth, The Art of Computer Programming 4A (2011)]

A brief history of majority logic

[D.E. Knuth, The Art of Computer Programming 4A (2011)]

A brief history of majority logic

[L.G. Amarù, P.-E. Gaillardon, and G. De Micheli, DAC 51 (2014), 194:1-194:6]

Majority function
$\left\langle x_{1} x_{2} x_{3}\right\rangle$

Majority function

$$
\left\langle x_{1} x_{2} x_{3}\right\rangle=\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right)
$$

Majority function

$$
\begin{aligned}
\left\langle x_{1} x_{2} x_{3}\right\rangle & =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3}
\end{aligned}
$$

Majority function

$$
\begin{aligned}
\left\langle x_{1} x_{2} x_{3}\right\rangle & =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \quad\left\langle x_{1} \ldots x_{n}\right\rangle=\left[x_{1}+\cdots+x_{n}>\frac{n}{2}\right] \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3}
\end{aligned}
$$

Majority function

$$
\begin{aligned}
\left\langle x_{1} x_{2} x_{3}\right\rangle & =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \quad\left\langle x_{1} \ldots x_{n}\right\rangle=\left[x_{1}+\cdots+x_{n}>\frac{n}{2}\right] \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3}
\end{aligned}
$$

Majority rule

$$
\begin{aligned}
& \left\langle x_{1} x_{1} x_{2}\right\rangle=x_{1} \\
& \left\langle x_{1} \bar{x}_{1} x_{2}\right\rangle=x_{2}
\end{aligned}
$$

Majority function

$$
\begin{aligned}
\left\langle x_{1} x_{2} x_{3}\right\rangle & =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \quad\left\langle x_{1} \ldots x_{n}\right\rangle=\left[x_{1}+\cdots+x_{n}>\frac{n}{2}\right] \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3}
\end{aligned}
$$

Majority rule

$$
\begin{aligned}
\left\langle x_{1} x_{1} x_{2}\right\rangle=x_{1} & \left\langle x_{1} \ldots x_{1} x_{2} \ldots x_{\left\lceil\frac{n}{2}\right\rceil}\right\rangle=x_{1} \\
\left\langle x_{1} \bar{x}_{1} x_{2}\right\rangle=x_{2} & \left\langle x_{1} \bar{x}_{1} x_{2} \ldots x_{n-1}\right\rangle=\left\langle x_{2} \ldots x_{n-1}\right\rangle
\end{aligned}
$$

Majority function

$$
\begin{aligned}
\left\langle x_{1} x_{2} x_{3}\right\rangle & =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \quad\left\langle x_{1} \ldots x_{n}\right\rangle=\left[x_{1}+\cdots+x_{n}>\frac{n}{2}\right] \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3}
\end{aligned}
$$

Majority rule

$$
\begin{aligned}
\left\langle x_{1} x_{1} x_{2}\right\rangle=x_{1} & \left\langle x_{1} \ldots x_{1} x_{2} \ldots x_{\left\lceil\frac{n}{2}\right\rceil}\right\rangle=x_{1} \\
\left\langle x_{1} \bar{x}_{1} x_{2}\right\rangle=x_{2} & \left\langle x_{1} \bar{x}_{1} x_{2} \ldots x_{n-1}\right\rangle=\left\langle x_{2} \ldots x_{n-1}\right\rangle
\end{aligned}
$$

Containment of AND and OR

$$
\begin{aligned}
& \left\langle x_{1} 0 x_{2}\right\rangle=x_{1} \wedge x_{2} \\
& \left\langle x_{1} 1 x_{2}\right\rangle=x_{1} \vee x_{2}
\end{aligned}
$$

Majority function

$$
\begin{aligned}
\left\langle x_{1} x_{2} x_{3}\right\rangle & =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \quad\left\langle x_{1} \ldots x_{n}\right\rangle=\left[x_{1}+\cdots+x_{n}>\frac{n}{2}\right] \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3}
\end{aligned}
$$

Majority rule

$$
\begin{aligned}
\left\langle x_{1} x_{1} x_{2}\right\rangle & =x_{1} & \left\langle x_{1} \ldots x_{1} x_{2} \ldots x_{\left\lceil\frac{n}{7}\right\rceil}\right\rangle & =x_{1} \\
\left\langle x_{1} \bar{x}_{1} x_{2}\right\rangle & =x_{2} & \left\langle x_{1} \bar{x}_{1} x_{2} \ldots x_{n-1}\right\rangle & =\left\langle x_{2} \ldots x_{n-1}\right\rangle
\end{aligned}
$$

Containment of AND and OR

$$
\begin{aligned}
& \left\langle x_{1} 0 x_{2}\right\rangle=x_{1} \wedge x_{2} \\
& \left\langle x_{1} 1 x_{2}\right\rangle=x_{1} \vee x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle x_{1} \ldots x_{\left\lceil\frac{n}{2}\right\rceil} 0 \ldots 0\right\rangle=x_{1} \wedge \cdots \wedge x_{\left\lceil\frac{n}{2}\right\rceil} \\
& \left\langle x_{1} \ldots x_{\left\lceil\frac{n}{2}\right\rceil} 1 \ldots 1\right\rangle=x_{1} \vee \cdots \vee x_{\left\lceil\frac{n}{2}\right\rceil}
\end{aligned}
$$

Majority: Algebraic rules

Commutativity rule

$$
\langle x y z\rangle=\langle y z x\rangle=\langle z x y\rangle
$$

Majority: Algebraic rules

Commutativity rule

$$
\langle x y z\rangle=\langle y z x\rangle=\langle z x y\rangle
$$

Associativity rule

$$
\langle x u\langle y u z\rangle\rangle=\langle\langle x u y\rangle u z\rangle
$$

Mnemonic: $(x \circ(y \circ z))=((x \circ y) \circ z)$

Majority: Algebraic rules

Commutativity rule

$$
\langle x y z\rangle=\langle y z x\rangle=\langle z x y\rangle
$$

Associativity rule

$$
\langle x u\langle y u z\rangle\rangle=\langle\langle x u y\rangle u z\rangle
$$

Mnemonic: $(x \circ(y \circ z))=((x \circ y) \circ z)$

Distributivity rule
$\langle x u\langle y v z\rangle\rangle=\langle\langle x u y\rangle v\langle x u z\rangle\rangle$
Mnemonic: $(x \circ(y \times z))=((x \circ y) \times(x \circ z))$

Majority: Algebraic rules

Commutativity rule

$$
\langle x y z\rangle=\langle y z x\rangle=\langle z x y\rangle
$$

Associativity rule

$$
\langle x u\langle y u z\rangle\rangle=\langle\langle x u y\rangle u z\rangle
$$

Mnemonic: $(x \circ(y \circ z))=((x \circ y) \circ z)$

Distributivity rule $\langle x u\langle y v z\rangle\rangle=\langle\langle x u y\rangle v\langle x u z\rangle\rangle$

Mnemonic: $(x \circ(y \times z))=((x \circ y) \times(x \circ z))$

Inverter propagation rule $\langle\bar{x} \bar{y} \bar{z}\rangle=\overline{\langle x y z\rangle}$

Results and motivation from circuit complexity

- $N C^{1}$ contains families of Boolean circuits with logarithmic depth, and a polynomial number of 2-input gates, and inverters

Results and motivation from circuit complexity

- NC ${ }^{1}$ contains families of Boolean circuits with logarithmic depth, and a polynomial number of 2-input gates, and inverters
- AC^{0} contains families of Boolean circuits with constant depth, a polynomial number of AND and OR gates with unbounded fan-in, and inverters

Results and motivation from circuit complexity

- NC ${ }^{1}$ contains families of Boolean circuits with logarithmic depth, and a polynomial number of 2 -input gates, and inverters
- AC^{0} contains families of Boolean circuits with constant depth, a polynomial number of AND and OR gates with unbounded fan-in, and inverters
- TC ${ }^{0}$ contains families of Boolean circuits with constant depth, a polynomial number of MAJ gates with unbounded fan-in, and inverters

Results and motivation from circuit complexity

- NC ${ }^{1}$ contains families of Boolean circuits with logarithmic depth, and a polynomial number of 2-input gates, and inverters
- AC^{0} contains families of Boolean circuits with constant depth, a polynomial number of AND and OR gates with unbounded fan-in, and inverters
- TC ${ }^{0}$ contains families of Boolean circuits with constant depth, a polynomial number of MAJ gates with unbounded fan-in, and inverters
- Relationship: $\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subseteq \mathrm{NC}^{1}$

Results and motivation from circuit complexity

- NC ${ }^{1}$ contains families of Boolean circuits with logarithmic depth, and a polynomial number of 2-input gates, and inverters
- AC^{0} contains families of Boolean circuits with constant depth, a polynomial number of AND and OR gates with unbounded fan-in, and inverters
- TC ${ }^{0}$ contains families of Boolean circuits with constant depth, a polynomial number of MAJ gates with unbounded fan-in, and inverters
- Relationship: $\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subseteq \mathrm{NC}^{1}$
- Examples: integer division and integer multiplication are in TC^{0}, but not in AC^{0}

Express majority- \boldsymbol{n} in terms of majority-3
One "fascinating" property of AND and OR

Express majority-n in terms of majority-3

One "fascinating" property of AND and OR

$$
\begin{aligned}
& x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n-1} \wedge x_{n}=\left(x_{1} \wedge\left(x_{2} \wedge\left(\cdots\left(x_{n-1} \wedge x_{n}\right) \cdots\right)\right)\right) \\
& x_{1} \vee x_{2} \vee \cdots \vee x_{n-1} \vee x_{n}=\left(x_{1} \vee\left(x_{2} \vee\left(\cdots\left(x_{n-1} \vee x_{n}\right) \cdots\right)\right)\right)
\end{aligned}
$$

Express majority-n in terms of majority-3

One "fascinating" property of AND and OR

$$
\begin{aligned}
& x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n-1} \wedge x_{n}=\left(x_{1} \wedge\left(x_{2} \wedge\left(\cdots\left(x_{n-1} \wedge x_{n}\right) \cdots\right)\right)\right) \\
& x_{1} \vee x_{2} \vee \cdots \vee x_{n-1} \vee x_{n}=\left(x_{1} \vee\left(x_{2} \vee\left(\cdots\left(x_{n-1} \vee x_{n}\right) \cdots\right)\right)\right)
\end{aligned}
$$

Not so easy with majority

Express majority-n in terms of majority-3

One "fascinating" property of AND and OR

$$
\begin{aligned}
& x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n-1} \wedge x_{n}=\left(x_{1} \wedge\left(x_{2} \wedge\left(\cdots\left(x_{n-1} \wedge x_{n}\right) \cdots\right)\right)\right) \\
& x_{1} \vee x_{2} \vee \cdots \vee x_{n-1} \vee x_{n}=\left(x_{1} \vee\left(x_{2} \vee\left(\cdots\left(x_{n-1} \vee x_{n}\right) \cdots\right)\right)\right)
\end{aligned}
$$

Not so easy with majority

$$
\left\langle x_{1} x_{2} x_{3} x_{4} x_{5}\right\rangle=\left\langle x_{1}\left\langle x_{2} x_{3} x_{4}\right\rangle\left\langle x_{5} x_{4}\left\langle x_{3} x_{2} x_{1}\right\rangle\right\rangle\right\rangle
$$

Express majority- n in terms of majority-3
One "fascinating" property of AND and OR

$$
\begin{aligned}
& x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n-1} \wedge x_{n}=\left(x_{1} \wedge\left(x_{2} \wedge\left(\cdots\left(x_{n-1} \wedge x_{n}\right) \cdots\right)\right)\right) \\
& x_{1} \vee x_{2} \vee \cdots \vee x_{n-1} \vee x_{n}=\left(x_{1} \vee\left(x_{2} \vee\left(\cdots\left(x_{n-1} \vee x_{n}\right) \cdots\right)\right)\right)
\end{aligned}
$$

Not so easy with majority

$$
\begin{aligned}
& \left\langle x_{1} x_{2} x_{3} x_{4} x_{5}\right\rangle=\left\langle x_{1}\left\langle x_{2} x_{3} x_{4}\right\rangle\left\langle x_{5} x_{4}\left\langle x_{3} x_{2} x_{1}\right\rangle\right\rangle\right\rangle \\
& \left\langle x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right\rangle=\left\langle x_{7}\left\langle x_{3}\left\langle x_{4} x_{5} x_{6}\right\rangle\left\langle x_{1} x_{2}\left\langle x_{4} x_{5} x_{6}\right\rangle\right\rangle\right\rangle\left\langle x_{6}\left\langle x_{1} x_{2} x_{3}\right\rangle\left\langle x_{4} x_{5}\left\langle x_{1} x_{2} x_{3}\right\rangle\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

Express majority-n in terms of majority-3

One "fascinating" property of AND and OR

$$
\begin{aligned}
& x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n-1} \wedge x_{n}=\left(x_{1} \wedge\left(x_{2} \wedge\left(\cdots\left(x_{n-1} \wedge x_{n}\right) \cdots\right)\right)\right) \\
& x_{1} \vee x_{2} \vee \cdots \vee x_{n-1} \vee x_{n}=\left(x_{1} \vee\left(x_{2} \vee\left(\cdots\left(x_{n-1} \vee x_{n}\right) \cdots\right)\right)\right)
\end{aligned}
$$

Not so easy with majority

$$
\begin{aligned}
& \left\langle x_{1} x_{2} x_{3} x_{4} x_{5}\right\rangle=\left\langle x_{1}\left\langle x_{2} x_{3} x_{4}\right\rangle\left\langle x_{5} x_{4}\left\langle x_{3} x_{2} x_{1}\right\rangle\right\rangle\right\rangle \\
& \left.\left\langle x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right\rangle=\left\langle x_{7}\left\langle x_{3}\left\langle x_{4} x_{5} x_{6}\right\rangle\left\langle x_{1} x_{2}\left\langle x_{4} x_{5} x_{6}\right\rangle\right\rangle\right\rangle\left\langle x_{6}\left\langle x_{1} x_{2} x_{3}\right\rangle\left\langle x_{4} x_{5}\left\langle x_{1} x_{2} x_{3}\right\rangle\right\rangle\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

Open problem: What are the optimum majority-3 networks to realize majority-n?

Monotone functions

Montone functions
A Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is monotone if $f_{\bar{x}_{i}} \rightarrow f_{x_{i}}$ for $1 \leqslant i \leqslant n$.

Monotone functions

Montone functions

A Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is monotone if $f_{\bar{x}_{i}} \rightarrow f_{x_{i}}$ for $1 \leqslant i \leqslant n$.

Schensted decomposition

If $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is monotone, then

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left\langle f\left(x_{1}, x_{1}, x_{3}, \ldots, x_{n}\right) f\left(x_{1}, x_{2}, x_{2}, \ldots, x_{n}\right) f\left(x_{3}, x_{2}, x_{3}, \ldots, x_{n}\right)\right\rangle
$$

- Since majority-n is monotone, we can use Schensted decomposition to map majority-n into majority-3

Monotone functions

Montone functions

A Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is monotone if $f_{\bar{x}_{i}} \rightarrow f_{x_{i}}$ for $1 \leqslant i \leqslant n$.

Schensted decomposition

If $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is monotone, then
$f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left\langle f\left(x_{1}, x_{1}, x_{3}, \ldots, x_{n}\right) f\left(x_{1}, x_{2}, x_{2}, \ldots, x_{n}\right) f\left(x_{3}, x_{2}, x_{3}, \ldots, x_{n}\right)\right\rangle$

- Since majority-n is monotone, we can use Schensted decomposition to map majority-n into majority-3
- Inner subfunctions remain monotone \rightarrow recursive application

Monotone functions

Montone functions

A Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is monotone if $f_{\bar{x}_{i}} \rightarrow f_{x_{i}}$ for $1 \leqslant i \leqslant n$.

Schensted decomposition

If $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ is monotone, then
$f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left\langle f\left(x_{1}, x_{1}, x_{3}, \ldots, x_{n}\right) f\left(x_{1}, x_{2}, x_{2}, \ldots, x_{n}\right) f\left(x_{3}, x_{2}, x_{3}, \ldots, x_{n}\right)\right\rangle$

- Since majority- \boldsymbol{n} is monotone, we can use Schensted decomposition to map majority-n into majority-3
- Inner subfunctions remain monotone \rightarrow recursive application
- But: Upper bound is exponential!

Majority-n from sorter networks

- Idee: Sort all input bits and pick the middle one from the sorted list

Majority-n from sorter networks

- Idee: Sort all input bits and pick the middle one from the sorted list
- Sorter networks consist only of comparators, which in the Boolean case can be implemented in terms of AND and OR:

$$
\begin{aligned}
x \bullet x \wedge y & =\langle x 0 y\rangle \\
y \bullet x \vee y & =\langle x 1 y\rangle
\end{aligned}
$$

Majority-n from sorter networks

- Idee: Sort all input bits and pick the middle one from the sorted list
- Sorter networks consist only of comparators, which in the Boolean case can be implemented in terms of AND and OR:

- Example: Sorter networks for 7 bits requires 16 comparisons (optimal), we can drop $2 \rightarrow 28$ majority gates

Majority-n from sorter networks

- Idee: Sort all input bits and pick the middle one from the sorted list
- Sorter networks consist only of comparators, which in the Boolean case can be implemented in terms of AND and OR:

- Example: Sorter networks for 7 bits requires 16 comparisons (optimal), we can drop $2 \rightarrow 28$ majority gates

Complexity: $\mathrm{O}(\mathrm{n} \log n)$

Majority-n from median selection

- Median selection: An algorithm that finds the median of given values $\left\{a_{1}, \ldots, a_{n}\right\}$ using $\mathrm{O}(\mathrm{n})$ comparisons (it does not sort all elements)

Majority-n from median selection

- Median selection: An algorithm that finds the median of given values $\left\{a_{1}, \ldots, a_{n}\right\}$ using $\mathrm{O}(\mathrm{n})$ comparisons (it does not sort all elements)
- $\left\langle x_{1} \ldots x_{n}\right\rangle=\left[\right.$ median of $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right]$

Majority-n from median selection

- Median selection: An algorithm that finds the median of given values $\left\{a_{1}, \ldots, a_{n}\right\}$ using $\mathrm{O}(\mathrm{n})$ comparisons (it does not sort all elements)
- $\left\langle x_{1} \ldots x_{n}\right\rangle=\left[\right.$ median of $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right]$
- Good asymptotic upper bound, but the construction is quite complex

Majority-n from median selection

- Median selection: An algorithm that finds the median of given values $\left\{a_{1}, \ldots, a_{n}\right\}$ using $\mathrm{O}(\mathrm{n})$ comparisons (it does not sort all elements)
- $\left\langle x_{1} \ldots x_{n}\right\rangle=\left[\right.$ median of $\left.\left\{x_{1}, \ldots, x_{n}\right\}\right]$
- Good asymptotic upper bound, but the construction is quite complex
- Majority-7 based on median selection construction has at least 42 majority gates

Shannon decomposition and majority decomposition

Shannon decomposition
For any Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
f=x_{i} ? f_{x_{i}}: f_{\bar{x}_{i}}=x_{i} f_{x_{i}} \oplus \bar{x}_{i} f_{\bar{x}_{i}}
$$

Shannon decomposition and majority decomposition

Shannon decomposition
For any Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
f=x_{i} ? f_{x_{i}}: f_{\bar{x}_{i}}=x_{i} f_{x_{i}} \oplus \bar{x}_{i} f_{\bar{x}_{i}}
$$

Majority decomposition [S.B. Akers Jr., 1961]
For a monotone Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
f=\left\langle x_{i} f_{x_{i}} f_{\bar{x}_{i}}\right\rangle=x_{i} f_{x_{i}} \oplus x_{i} f_{\bar{x}_{i}} \oplus f_{x_{i}} f_{\bar{x}_{i}}
$$

From BDDs to majority graphs

Binary decision diagram

From BDDs to majority graphs

From BDDs to majority graphs

Binary decision diagram
$\left\langle x_{1} x_{2} x_{3} x_{4} x_{5}\right\rangle$

Majority graph

Majority graph (compact)

Upper bounds for majority-n decomposition

n	3	5	7	9	11	13	15	17
Optimum	1	4	7					
BDDs	3	8	15	24	35	48	63	80
Sorter networks	6	18	32	50	70	90	112	142
Median selection*	18	30	42	53	65	77	89	101

*optimistic: takes only into account number of comparators

Deriving the optimum majority-5

Apply distributivity rule

$$
\left\langle\left\langle x_{4} x_{5} 0\right\rangle x_{3}\left\langle x_{4} x_{5} 1\right\rangle\right\rangle=\left\langle x_{4} x_{5}\left\langle 0 x_{3} 1\right\rangle\right\rangle=\left\langle x_{4} x_{3} x_{5}\right\rangle
$$

Deriving the optimum majority-5

Apply relevance rule
$\langle x y z\rangle=\left\langle x y z_{x / \bar{y}}\right\rangle$

Deriving the optimum majority-5

Apply relevance rule

$$
\begin{aligned}
& \langle x y z\rangle=\left\langle x y z_{x} / \bar{y}\right\rangle \\
& \left\langle 0 x_{3}\left\langle 0 x_{4} x_{5}\right\rangle\right\rangle=\left\langle 0 x_{3}\left\langle 0 x_{4} x_{5}\right\rangle_{0 / \bar{x}_{3}}\right\rangle=\left\langle 0 x_{3}\left\langle\bar{x}_{3} x_{4} x_{5}\right\rangle\right\rangle
\end{aligned}
$$

Deriving the optimum majority-5

Apply relevance rule

$$
\langle x y z\rangle=\left\langle x y z_{x / \bar{y}}\right\rangle
$$

$$
\left\langle 0 x_{3}\left\langle 0 x_{4} x_{5}\right\rangle\right\rangle=\left\langle 0 x_{3}\left\langle 0 x_{4} x_{5}\right\rangle_{0 / \bar{x}_{3}}\right\rangle=\left\langle 0 x_{3}\left\langle\bar{x}_{3} x_{4} x_{5}\right\rangle\right\rangle
$$

$$
\left\langle 1 x_{3}\left\langle 1 x_{4} x_{5}\right\rangle\right\rangle=\left\langle 1 x_{3}\left\langle 1 x_{4} x_{5}\right\rangle_{1 / \bar{x}_{3}}\right\rangle=\left\langle 1 x_{3}\left\langle\bar{x}_{3} x_{4} x_{5}\right\rangle\right\rangle
$$

Deriving the optimum majority-5

Apply distributivity rule

$$
\left\langle\left\langle x_{2} A B\right\rangle x_{1}\left\langle x_{2} A C\right\rangle\right\rangle=\left\langle x_{2} A\left\langle B x_{1} C\right\rangle\right\rangle
$$

Deriving the optimum majority-5

Apply distributivity rule

$$
\left\langle\left\langle x_{3} A 0\right\rangle x_{1}\left\langle x_{3} A 1\right\rangle\right\rangle=\left\langle x_{3} A\left\langle 0 x_{1} 1\right\rangle\right\rangle=\left\langle x_{3} A x_{1}\right\rangle
$$

Deriving the optimum majority-5

Deriving the optimum majority-7

Identify majority-5
There are actually four majority- 5 subnetworks in the graph

Deriving the optimum majority-7

Consider left branch

Deriving the optimum majority-7

Identify majority-3

Deriving the optimum majority-7

Relevance

Changes constants into primary inputs

Deriving the optimum majority-7

Distributivity

Deriving the optimum majority-7

Distributivity

Deriving the optimum majority-7

Remove \perp and \top

Deriving the optimum majority-7

Replacement rule
We have

$$
\langle x y z\rangle=\langle w y z\rangle
$$

if and only if $(y \oplus z)(w \oplus x)=0$.

Deriving the optimum majority-7

Replacement rule

Deriving the optimum majority-7

Distributivity $+M_{5}$ optimum

Deriving the optimum majority-7

Swapping rule
Let $v_{1}, v_{2}, w_{1}, w_{2}$ not depend on x and y. We have

$$
\left\langle x\left\langle y v_{1} w_{1}\right\rangle\left\langle\mathbf{y} v_{2} w_{2}\right\rangle\right\rangle=\left\langle x\left\langle\mathbf{y} v_{2} w_{1}\right\rangle\left\langle\mathrm{y} v_{1} w_{2}\right\rangle\right\rangle
$$

$$
\text { if }\left(v_{1} \oplus v_{2}\right)\left(w_{1} \oplus w_{2}\right)=0
$$

Deriving the optimum majority-7

Distributivity and relevance

Deriving the optimum majority-7

Optimum result

Conclusions

- Research question: How many majority-3 operations do we need to realize majority-n (precisely)?

Conclusions

- Research question: How many majority-3 operations do we need to realize majority-n (precisely)?
- Constructions that were used to show good asymptotic upper bounds are not helpful for small n

Conclusions

- Research question: How many majority-3 operations do we need to realize majority-n (precisely)?
- Constructions that were used to show good asymptotic upper bounds are not helpful for small n
- Proposed construction method based on BDDs by exploiting decomposition property for monotone functions

Conclusions

- Research question: How many majority-3 operations do we need to realize majority-n (precisely)?
- Constructions that were used to show good asymptotic upper bounds are not helpful for small n
- Proposed construction method based on BDDs by exploiting decomposition property for monotone functions
- Next: Majority-9 and more insight into analytical derivations

The fascinating properties of majority
Mathias Soeken
Integrated Systems Laboratory, EPFL, Switzerland

- mathias.soeken@epfl.ch msoeken.github.io (O) msoeken/cirkit

